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ABSTRACT 

General equations, somewhat simpler than those found i n  the 

l i t e r a t u r e  (refs. 1 and 2) ,  a r e  derived f o r  the photoelastic 

method. The transformation i s  made t o  a rotat ing coordinate 

system whose axes a r e  aligned with the quasi-principal 

stresses.  The equivalence of the resul tant  equations t o  the 

Neumann equations i s  demonstrated. The new equations a re  

used t o  investigate certain special  problems. General 

re la t ions a r e  derived for the method of character is t ic  

directions, and the application of t h i s  method for the 

investigation of three-dimensional models i s  considere 

1. The propagation of l i g h t  i n  an anisotropic inhomogeneous medium is  

described by equations derived by V. L. Ginzburg (refs.  3 and 4 ) :  

. where E D. a re  the components of the e l ec t r i c  f i e l d  and e l ec t r i c  induction 
i' 1 

vectors, o i s  the c i rcu lar  frequency, c i s  the velocity of l i g h t  i n  vacuum, 

z is  measured i n  the direction of propagation. Bearing i n  mind the relat ions 

where E i s  the d ie lec t r ic  tensor, w e  obtain the system of equations i j  

Numbers i n  the margin indicate pagination i n  the or iginal  foreign text. 
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In  the case of isotropic,  optically sensi t ive materials subjected t o  

e l a s t i c  deformations, the d ie lec t r ic  tensor e i j  i s  related t o  the s t r e s s  

tensor u by the expression 

e . .  - - nq.. 
i j  

3 

2C012Gij $. 2Cin 2 dnrkaij (1.4) 
- -  k=1 -. --_ 

where n i s  the refrac"tive index of the unstressed material, 

Kronecker delta,  C C a re  the optical  constants. 

6 is  the tensor i j  

0' 1 
We w i l l  seek a solution of the system (1.3) in the form 

E.  = Ajc*z [p-!!? j =  1, 2) 
I \ ' - -  c ' 

The transformation (1.5)- takes us  from analysis of the functions E and 
1 

E2, which a re  rapidly varying i n  z, to  analysis of the slowly varying functions 

A1 and A2, retaining the  same amplitude r a t i o  and phase difference of the 

components a s  before. 

We have from the re la t ions  (1.3) t o  (1.5) 

i ,  j=1 

If the medium i s  opt ical ly  isotropic, A .  = const. 
J 

The opt ical  anisot- &l 

ropy of photoelastic models i s  very s l ight ,  hence it may be assumed that 

d ~ . / d z  and d 2 A./dz 2 a r e  of roughly the same order Of m a i t u d e -  
-, 
J J 

In view of the f a c t  t ha t  the quantity k i s  large, of the order IO5, while 

o r  lo4, the influence of the  constants C 

the  second derivatives i n  the system (1.6) on the solution is  insignificant.  

This means tha t ,  instead of the  system (1.6), w e  a re  en t i t l ed  t o  investigate 

and C1 a re  small, of the order 0 

the  system 
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For further simplification of the equations, we go over to the new 

variables (ref. 5) 

amplitude ratio or phase difference of the electric vector components. 

Taking (1.8) into account, we obtain from (1.7) 

iCo,,B, - iCa&, (1.9) dBz - -- - - _ -  
dz  dB1 - iCo,,B, - iCa,J?,, dz  

Equations (1.9) are general equations of the photoelastic method when the 

electromagnetic mode is described in stationary coordinates. 

2. Let the quasi-principal directions form an angle b(z) with the 

stationary coordinates. 

along the quasi-principal directions by B' 

Designating the components of the electric vector 

we have 
j' 

B, = 8,' cos cp - B,'sin cp, B, = B,' sin 'p + 13%' COS 9, 

Substituting equations (2.1) into (1.9), we obtain 

-COS dB1' c p -  B,' -sin dr3 (2 --sin dB; cp - B I - dq, cos y + 
(2.2) d; d z dz  2 dz 

4- ~ C G ~ ~  (B,' cos cp - B,' sin @) + iCo;, (Blr sin y +- B,' cos cp) = 0 

+ iC@;, (B,' cos cp - B,' sin cp) t iCo,, (B1' sin cp f B,' cos ab= 0 .. k .  

3 



t W e  multiply the f i r s t  equation by s i n  8, the second by cos 8 , and sub- 

t r a c t ;  w e  then multiply the f i r s t  equation by cos d , the second by s in  6 , and 

add. Denoting the quasi-principal stresses by c., we have 
J - -  - 

(2.3) 
- 2 ~  dB ' - iCa,B,' j --R2', dg -- d B i  _ -  - E l f  d0  - iCq&'. (2.3) 

dz di  d i  dz - -  . .  

Equations (2.3) a r e  similar t o  the equations i n  p a r t i a l  derivatives of 

Mindlin and Goodman (ref. 6) but differ  appreciably from the most widely 

recognized photoelastic equations derived by O'Rourke (ref . 7) and Proshko 

(refs. 8 and 9). Inasmuch as equations (2.3) a re  simpler than the equations 

derived by other authors, a question a r i s e s  a s  t o  whether equations (2.3) 

adequately describe the photoelastic e f f ec t s  i n  complex-stress models. To 

answer th i s ,  w e  w i l l  demonstrate the equivalence of equations (2.3) t o  the 

Neumann equations (ref. lo), which may be regarded a s  the c lass ica l  approxima- 

t i on  i n  the theory of photoelasticity. 

3. Consider a solution of the  system (2.3) in fo r  form /42 

. I  (3.1) 

where V .  and A .  are  functions of z. 
J J 

Substi tuting equations (3.1) into the system (2.3) and se t t ing  the r e a l  and 

imaginary par t s  of the resul tant  equations separately equal t o  zero, we have 



1’ L e t  us multiply the first equation by cos A the second by s in  A 1’ 
and subtract; then the t h i r d  equation by cos A the fourth by s in  A and 

2’ 2’ 
subtract; then the first equation by s i n  A the second by cos A and add; 1’ 1’ 
then the t h i r d  equation by sin A2, the fourth by cos A 2 ,  and add. We obtain 

as  a r e su l t  

Subtracting the fourth equation of the system ( 3 . 3 )  from the th i rd  and 

using the  notation V,/Vl = tan y ,  we have 

From the first two relat ions ( 3 . 3 )  w e  obtain 

d’: dv - = - ---cosA 
d Z  dz  

(3.5 1 

Equations ( 3 . 4 )  and ( 3 . 5 )  represent the famil iar  Neumann equations. 

4 .  L e t  us consider the solution of equations ( 2 . 3 )  i n  some simple special  

cases . 
1 

Uniformly stressed s ta te  (d6/dz = 0, u. = const). 
J 

- _ -  - I  *iCa$,’ d B i  
-= -  i&,B 1‘, dz w - 

(2.3) transforms t o  d B i  
ds 

The solution of (4.1) is 

The system 

( 4 . 1 )  

where B lo, BZ0 are  the opt ical  electromagnetic modes a t  the point of entry 

(z  = 0). The phase difference of the modes ( 4 . 2 )  is  equal t o  A =  C (  u1 - a 2 ) z ,  

the  amplitude r a t i o  is a constant. These re su l t s  agree with the well  known 

postulates of the photoelastic method i n  the solution of two-dimensional problems. 

5 



2) Quasi-principal stresses varying a rb i t r a r i l y  i n  magnitude with 

fixed direction (db/dz = 0, u = .(z)) .  In t h i s  case the solution of the 

system (2.3) i s  
j J 

(4.3) 

The amplitude r a t i o  of the normal opt ical  modes i s  constant, the  phase /43 
difference i s  expressed i n  the form 

This re su l t  i s  i n  agreement with the first approximation obtained by 

Proshko (ref.  9 ) ,  s ta r t ing  with equations (1.1). The same result was obtained 

by Mindlin (ref. 11) f o r  the case of l inear ly  varying quasi-principal stresses.  

Equation (4.4) is  the re la t ion  generally used for the analysis of frozen slices.  

3 )  Uniform rotat ion of quasi-principal s t resses  a t  constant 

magnitude (6 = b0z = const, cT = const). The System (2.3) traTlSf0rmS t o  
j 

/ * - iklz  
J J 

Expressing the solution of the system (4.5) i n  the form B .  = B . e  3 

we have 

For the phase difference between normal modes w e  obtain 

Equations (4.6) and (4.7) lead to  the same resu l t s  t ha t  have been obtained 

by the al ternat ive method of Drucker and Mindlin (ref.  12) and, s ta r t ing  with 

(l.l), by Ginzburg (ref.  4 ) .  
6 



The discussion of the last two sections indicates that the general photo- 

elasticity equations in the form (1.9) and (2.3) are equivalent to the Neumann 

equations and do not imply additional physical simplifications over the 

currently generally accepted postulates of the photoelastic method. 

Application of the integral optical effect for analysis of the stressed 

state of three-dimensional models can in some cases be effectively substituted 

by the more complex freezing technique. However, the following problem arises 

in this connection.. 

In the analysis of two-dimensional photoelastic models, the customary 

procedure permits the determination of two experimental quantities at each 

point, the phase difference and isoclinic parameter. 

of light through three-dimensional models isoclines are not generally observed 

Since in the transmission 

in the crossed polariscope, it is supposed in the majority of investigations 

(see, e.g., refs. 7, 13, and 14) that only the isochrome pattern is determined 

experimentally. It is found in the analysis of complex-stress models, there- 

fore, that when the number of unknowns is greater the amount of experimental 

data diminishes. Furthermore, it is not possible to perform a more precise 

measurement of the phase-difference. 

5.  In the transmissior,.of polarized light t,hrough photoelastic snodels, L- 
the components of the optical mode at the point of exit are certain functions 

of the components at the point of entry, the nature of this function depending 

on the stressed state of the model. 

light is monochromatic and completely polarized, the light emerging from the 

It may be assumed that if the incident 

model will be monochromatic and completely polarized. In this case, according 

to the work of Jones (ref. 15), the components of the optical model at the exit 

point will be linear functions of the components at the entry point. 

7 



Consequently, the three-dimensional photoelastic model for a given light ray 

will be characterized by some linear transformation or matrix, which transforms 

the entrant optical modes into modes at the exit point. 

model does not alter the light intensity, this matrix will be unitary. 

Because the photoelastic 
1 

We denote by BlO, B20 the components of the optical mode at the entry 

the same components at the exit point. point and by B1, B 

mission of polarized light through the photoelastic model is described by the,& 

Then the trans- 2 

transformation 

where U is a certain unitary matrix. 

We note that the matrix method for describing optical systems has been 

thoroughly developed by R. Jones (refs. 15 and 16) for the case when the 

optical effects that occur must be determined in terms of the k n m  parameters 

of the optical system. For solution of the converse problem, a method is still 

in need of development. 

We w i l l  show that every unitary matrix U can be reduced to diagonal form 

by the transformation 

where 

'It can be shown that the matrix describing a photoelastic model is also 

unimodular. 
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The most general second-rank unitary matrix has the form * 

In the case of photoelastic models, the parameters 6 ,  6 ,  and 8 are 
I 

determined by the stressed state along the light ray. 

Carrying out the multiplication in equation (5.2) and equating the non- 

diagonal elements of the product to zero, we obtain a system of equations 

whose solution is 

( 5 . 5 )  
sin (c + 5) sin 20 

tg2uo= . tg2a. = s:n 2; cos2 8 - sin 2; si$ 0 3 

sin (5  - 4)  sin 28 
sin 2; sins 8 i- sin 2 cos2 u 

Since, according to equations ( 5 . 5 ) ,  the quantities a and a* have real 

values for  any values of e ,  f , and &, the theorem has been proven. 

Substituting a and C y j c  from equations (5.5) into the diagonal elements 0 
of the matrix S(  a*)US(-ao) and equating this matrix to the matrix G ( b ) ,  we 

have 

(5 .6)  cos 29 = [cos 2g + cos 2 j  4 cos 28 (cos 2g - cos 2j)l 

, The above results can be physically Interpreted as follows. The form of 

the matrix U characterizing the photoelastic model depends on the choice of 

coordinate axes; multiplication of the matrix U by the matrix S ( - a o )  on the 

right and by the matrix S( a,) on the left denotes rotation of the coordinate 

axes at the point of entry and exit through the angles a 

respectively. 

and a*, 

9 



The directions defined by the angle @ are called the primary, those 
0 

defined by a, the secondary characteristic directions. 

called the characteristic Bhase difference. 

The quantity 2b is 

the components of the entrant mode in the primary 

the components of the emergent mode 
B20, 0 Denoting by B1O,o, 

characteristic directions and by B 

in the secondary characteristic directions, we have 

B l,*’ 2,* 

It is apparent from equation (5.7) that if the incident light is linearly 

polarized in one of the primary characteristic directions, the light emerging 

from the model will also be linearly polarized in the corresponding secondary 

characteristic direction. 

characteristic directions are said to be conjugate, the angle a between them 

Mutually correspondent primary and secondary 

& being expressed by the relation 

A s  evident from (5 .7 ) ,  the characteristic directions preserve their prop- 

erties when light is passed through the model in the opposite direction, the 

characteristic phase difference remaining the same. 

The characteristic directions can be determined experimentally by means 

of any polariscope in which the polarizer and analyzer are independently 

rotatable. 

of polarization optics. 

parameters of the matrix U by equations (5.5) and (5 .6 ) ,  while the latter in 

The characteristic phase difference can be measured by any method 

Since the characteristic quantities are related to the 

10 



turn are governed by the stressed state of the model, determination of the 

characteristic parameters gives three relations between the experimental data 

and stress parameters. 

then for each light ray only one relation will be obtained. 

determination of the characteristic parameters greatly increases the amount of ' 

information on the stress state of three-dimensional models. 

We note that if only the isochrome pattern is determined, 

Consequently, 

6. The method of characteristic directions can be applied in practice as 

follows: 

form of the matrix U (5 .4 ) ,  which is essentially the matrix transform of the 

initial system of differential equations. 

between the components of the stressed state and the parameters 8 ,  
The parameters 5 ,  

parameters according to equations (5.5) and (5.6) and are used in turn to find 

the components of the stressed state. 

By integration of the system (1.9) or (2.3) we establish the specific 

This establishes the relations 

5 ,  and 0. 

[, and 8 are determined from the experimental characteristic 

In addition to the general equations (5.5) and ( 5 . 6 ) ,  the relations be- 

tween the characteristic parameters and stress components can also be derived 

directly from the solution of the original system of differential equations. 

Inasmuch as the characteristic parameters depend on the wavelength,2 the 

amount of information concerning the stressed state can be increased by 

performing experiments at different wavelengths. 

We will consider, as an example based on the algorithm presented above, 

the problem of uniform rotation of the quasi-principal directions. 

from solution of the original system of differential equations (4.5) that the 

matrix U in the given case has the form 

It follows 

2This effect is termed dispersion of the characteristic quantities. 



. 

Equating corresponding elements of the matrices (5.4) and (6.1) we  obtain 

the system 

COS 5 COS e = COS 9, sin'€ cos 8 = S-1 sin 
sin 5 sin 8 = 0 cos sin 8 =-RS-1 sin $, 

the  solution of which is 

Substi tuting equations (6.3) into ( 5 . 5 ) ,  (5.6), and (5 .8) ,  w e  f ind 

x 2 
t g  2a, = - -- cos 2" = 1- -sinZ$ s q.*. * p  

t g  (P*- RS-1 t g  * 
I - RS-L tg "0 t& * ~ p ~ = t g ( ~ o + a * - a o ) =  - 

(6 .4)  

The angle of rotat ion of the quasi-principal s t resses  and their difference 

(refs. 17 and 18) can be determined from the  experimentally determined charac- 

t e r i s t i c  quant i t ies  by means of equations (6 .4) ,  which were derived by another 

method i n  reference 17. 

A n  algorithm i s  given i n  references 1 and 2 f o r  the case of transmission 

through she l l s  .' We note tha t  the method of character is t ic  directions should 

a l so  be effective i n  the u t i l i za t ion  of scat ter ing techniques (ref. 17). 

. 
3For materials with a re la t ively l o w  opt ical  sensi t ivi ty .  

12 
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.. The feasibility of determining three experimental variables in the trans-h 

mission of light through three-dimensional models has been demonstrated by 

Kuske (ref. 19) by a unique geometric method. This method is based on the 

application of a Poincare sphere, with the transforms of the polarized light 

projected on the equatorial plane of the sphere. 

Poincare method to the photoelasticity problem is examined in more general form 

by Bokshteyn (refs. 20 and 21), however the application of characteristic 

quantities is not treated in these papers. 

* 

The application of the 

In the utilization of the Poincare method, integration of the system (1.9) 

or (2.3) is replaced by solution of a certain spherical kinematical problem. 

Although the latter problem is scarcely any simpler than the former, the 

Poincare method deserves attention for its graphic representation of optical 

phenomena. 

The relationship between the optical effects in photoelastic models and 

spherical kinematics becomes especially clear when the matrix method described 

above is used. 

second rank is isomorphic with a group of orthogonal matrices of third rank. 

The latter group describes rotations in three-dimensional space, which can be 

It is well known that a group of unitary unimodular matrices of 

interpreted as rotations of the Poincare'sphere. 

this connection that the matrix (5.4) corresponds to rotation (ref. 22) with 

Euler angles 6 + t[ , 28, and 6 - 5 .  

It is interesting to note in 

13 
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